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1. Introduction

The problem of finding the motion of a weakly non-linear oscillator with two degrees of
freedom has been widely considered and solved by using various approximative methods [1–3].
The aim of this note is to show that a field method can also serve this purpose. The following
extension of the field method to such problems contributes to the fact about its generality and
applicability to a wide variety of systems: non-conservative dynamical systems [4,5] (for whose
study it was primarily developed), weakly non-linear systems with one degree of freedom [6–8]
and non-holonomic systems [9].

The field method theory is based on the assumption that one of the state variables of the
system (generalized co-ordinate or momentum) can be expressed as a function of the other
state variables and time. As a consequence, the problem of the direct integration of the equations
of motion is replaced by finding the complete solution of a partial differential equation. The
sought solution for the motion is available from this complete solution by applying simple
algebraic operations.

2. Extension of the method

Consider a special type of two-degree-of-freedom system:

’x ¼ p;

’p ¼ �o2
1x þ eF1ðx; y; p; z; tÞ;

’y ¼ z;

’z ¼ �o2
2y þ eF2ðx; y; p; z; tÞ; ð1Þ
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where x; y; p; z are state variables, o1 and o2 are known constant frequencies of the system, F1

and F2 are non-linear functions of the state variables and time t; and e is a small parameter
ð0oe{1Þ; while an overdot denotes the differentiation with respect to time.

In accordance with the field method theory and its prior applications to linear systems with two
degrees of freedom [4,5], the next step to be performed in order to find the motion of Eq. (1), is to
define one of the state variables as only field dependent on the other state variables and time.
However, non-linearity of system (1) seems to require the completely different concept of
introducing two fields. The reason for exerting this essential modification is the conspicuous
transformation of system (1) into two uncoupled subsystems of differential equations for the case
when e ¼ 0: Then, these two subsystems can be observed as two mutually independent ones with
one degree of freedom and for each of them one field can be specified.

So, for system (1) each co-ordinate is defined as a field of time t and the corresponding
momentum:

x ¼ U1ðt; pÞ; ð2Þ

y ¼ U2ðt; zÞ: ð3Þ

Partial differentials of these two expressions in combination with Eq. (1) yield two basic
equations:

@U1

@t
þ
@U1

@p
½�o2

1U1 þ eF1ðU1;U2; p; z; tÞ� � p ¼ 0; ð4Þ

@U2

@t
þ

@U2

@z
½�o2

2 U2 þ eF2ðU1;U2; p; z; tÞ� � z ¼ 0: ð5Þ

Closed forms of conditioned form solutions [5] of the weakly non-linear equations (4) and (5)
are seldom obtainable. In order to achieve approximate solutions, the technique of multiple scales
in the first approximation is used and two independent variables, ‘fast’ and ‘slow’ times [2] are
introduced:

T ¼ t; t ¼ et: ð6Þ

Further, both fields U1 and U2 and both state variables p and z can be expanded in powers of
the small parameter e:

U1ðT ; p; eÞ ¼ U10ðT ; t; p0Þ þ eU11ðT ; t; p1Þ þ?;

pðT ; eÞ ¼ p0ðT ; tÞ þ ep1ðT ; tÞ þ?;

U2ðT ; z; eÞ ¼ U20ðT ; t; z0Þ þ eU21ðT ; t; z1Þ þ?;

zðT ; eÞ ¼ z0ðT ; tÞ þ ez1ðT ; tÞ þ?: ð7Þ

Substituting Eq. (7) into Eqs. (4), (5) and equating coefficients of the same power of e; the
following system of coupled partial differential equations is obtained:

@U10

@T
� o2

1U10
@U10

@p0
� p0 ¼ 0; ð8Þ

@U11

@T
� o2

1U11
@U11

@p1
� p1 ¼ �

@ %U10

@t
�

@ %U0

@p0
F1ð %U�

10; %U�
20; p0; z0;T ; tÞ; ð9Þ
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@U20

@T
� o2

2U20
@U20

@z0
� z0 ¼ 0; ð10Þ

@U21

@T
� o2

2U21
@U21

@z1
� z1 ¼ �

@ %U20

@t
�

@ %U20

@z0
F2ð %U�

10; %U�
20; p0; z0;T ; tÞ; ð11Þ

where %U�
10 and %U�

20 are the so-called solutions along trajectories, which stand for the conditioned
form solutions calculated for the value of the first component of the corresponding momentum.

The conditioned form solution of quasi-linear partial differential equation (8) can be assumed
in the form [8]:

%U10 ¼
p0

o1
tanðo1T þ C1Þ þ

a1ðtÞ cosðb1ðtÞ � C1Þ
cosðo1T þ C1Þ

; ð12Þ

where the functions a1ðtÞ and b1ðtÞ are to be calculated and C1 is an arbitrary constant.
Applying Vujanovic’s theorem [4,5], i.e. its condition about independency of the conditioned

form solution on the arbitrary constant @ %U10=@C1 ¼ 0; the first component of the momentum p0

in the first approximation is obtained:

p0 ¼ �o1a1ðtÞ sinðo1T þ b1ðtÞÞ: ð13Þ

Using Eq. (13), the conditioned form solution (12) transforms into the solution along
trajectory:

%U�
10 ¼ a1ðtÞ cosðo1T þ b1ðtÞÞ: ð14Þ

It has the well-known form for the solution in the first approximation for the motion of a
vibrational system, where functions a1ðtÞ and b1ðtÞ imply an amplitude and phase of vibrations.

Analogously, the corresponding component of the second field and its momentum are

%U20 ¼
z0

o2
tanðo2T þ C2Þ þ

a2ðtÞ cosðb2ðtÞ � C2Þ
cosðo2T þ C2Þ

; ð15Þ

z0 ¼ �o2a2ðtÞ sinðo2T þ b2ðtÞÞ; ð16Þ

%U�
20 ¼ a2ðtÞ cosðo2T þ b2ðtÞÞ; ð17Þ

while a2 and b2 are functions to be determined and C2 is an arbitrary constant.
On the basis of Eqs. (12) and (15), the complete solutions for the second components of the

fields can be taken as

U11 ¼
p1

o1
tanðo1T þ C1Þ þ

D1ðT ; tÞ
cosðo1T þ C1Þ

; ð18Þ

U21 ¼
z1

o2
tanðo2T þ C2Þ þ

D2ðT ; tÞ
cosðo2T þ C2Þ

; ð19Þ

where D1 and D2 are unknown functions.
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So, after substituting Eqs. (12)–(19) into Eqs. (9) and (11), the following system is obtained:

dDi

dT
¼ �

dai

dt
cosðbi � CiÞ þ ai

dbi

dt
sinðbi � CiÞ

þ
sinðoiT þ CiÞ

oi

Fið %U10ð p0Þ; %U20ðz0Þ; p0; z0;T ; tÞ; ð20Þ

where i ¼ 1; 2:
The further consideration assumes the elimination of secular terms. However, this procedure

depends on the exact forms of the non-linear functions F1 and F2: Therefore, their forms will be
specified and the solution for the motion will be found completely.

2.1. Example

Consider the weakly non-linear vibrational system (1), when [3]

o1 ¼ 1E2o2; F1 ¼ y2; F2 ¼ 2xy � sy; ð21Þ

where s is a constant expressing nearness of the frequencies o1 and o2 in a resonant mode.
For this problem, Eqs. (20) become

dD1

dT
¼ �

da1

dt
cosðb1 � C1Þ þ a1 sinðb1 � C1Þ

db1

dt
� sinðT þ C1Þa2

2 cos2 1
2

T þ b2

� �
; ð22Þ

dD2

dT
¼ �

da2

dt
cosðb2 � C2Þ þ a2 sinðb2 � C2Þ

db2

dt
� 4 sin 1

2
T þ C2

� �
a1a2 cosðT þ b1Þ cos

1
2

T þ b2

� �

þ 2sa2 sin 1
2

T þ C2

� �
cos 1

2
T þ b2

� �
: ð23Þ

Eliminating secular terms from the previous system, gives

�
da1

dt
cos b1 þ a1 sin b1

db1

dt
þ 1

4
a2
2 sin 2b2 ¼ 0;

�
da1

dt
sin b1 � a1 cos b1

db1

dt
� 1

4
a2
2 cos 2b2 ¼ 0;

�
da2

dt
cos b2 þ a2 sin b2

db2

dt
� a1a2 sinðb2 � b1Þ � sa2 sin b2 ¼ 0;

�
da2

dt
sin b2 � a2 cos b2

db2

dt
� a1a2 cosðb2 � b1Þ þ sa2 cos b2 ¼ 0: ð24Þ

After some transformations, system (24) gives the first order differential equations for the
amplitude and phase of vibrations:

�
da1

dt
þ 1

4
a2
2 sinð2b2 � b1Þ ¼ 0;

a1
db1

dt
þ 1

4
a2
2 cosð2b2 � b1Þ ¼ 0;
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�
da2

dt
� a1a2 sinð2b2 � b1Þ ¼ 0;

a2
db2

dt
þ a1a2 cosð2b2 � b1Þ � sa2 ¼ 0: ð25Þ

These equations are in complete agreement with those given in Ref. [3].

3. Conclusion

In this note, the analytic procedure for obtaining the solution in the first approximation of a
weakly non-linear oscillatory system with two degrees of freedom is developed. It is based on the
field method, which is combined with the technique of multiple scales. It is shown that for this
kind of a system two fields of the state variables have to be defined and, consequently, two basic
equations have to be solved. The complete algorithm for finding the first order differential
equations for the amplitudes and phases of vibrations are obtained. Thus, being narrowed down
to a procedure, the technique of the field method is amenable to being applied to weakly non-
linear systems with many degrees of freedom.
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